
Energy gauge and electron confinement in quasicrystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 743

(http://iopscience.iop.org/0305-4470/31/2/029)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 743–756. Printed in the UK PII: S0305-4470(98)81379-6

Energy gauge and electron confinement in quasicrystals

Peter Kramer
Institut für Theoretische Physik der Universität, Tübingen, Germany
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Abstract. Electronic single-particle states in 1D finite, periodic and quasiperiodic potentials
are analysed. The notions of band germs, Bloch germs, bound and decaying states and of energy
gauges are introduced and illustrated by exact solutions with the continuous transfer matrix.

1. Global and local views of the electronic structure

In the physics of quasicrystals [7] the electronic structure is a central issue. From its
analysis one expects insight into the stability of these phases, for example through the
Hume–Rothery mechanism, and an understanding of the extremely low conductivity found
at low temperature in these metallic systems.

Much effort has been devoted to the computation of the density of electronic states
(DOS) in quasicrystals. Theoretical studies of the DOS made in particular by Fujiwara
et al [3, 4] employ band structure computations of LMTO type [13]. When applying band-
structure computations to quasicrystals one must replace the quasiperiodic structure globally
by a periodic approximant with a single but large unit cell with alarge-scale arrangement
of many atoms. The resulting DOS then reflects a complex many-band structure. The
computations show two features: a pseudogap near the Fermi energy, and a spiky structure
of the DOS. Both features were proposed as characteristics of quasicrystals, but are still
controversial: recent experimental photoemission data with ultrahigh resolution obtained by
Stadniket al [14] confirm the pseudogap but yield, in contrast to the theoretical prediction,
a very smooth behaviour of the DOS. For the theory the question arises concerning which
limitations of the computed electron structure are due to the global-band approximation.

In structure models, quasicrystals are often described as a quasiperiodic arrangement of
a few local atomic clusters. This brings up the question oflocal views on the electronic
structure in quasicrystals. Heine [5] has advocated a radicallocal viewpoint on general
electronic structures in solids and proposed to throw outK-space. The recursive method
[6] is a computational approach along this line. We shall adopt a local view but emphasize
that this does not excludeK-space. A local viewpoint was expressed earlier in the cellular
method for crystals due to Wigner and Seitz [15]: the one-electron Schrödinger equation
is to be solved locally on the Wigner–Seitz cell of the crystal with Bloch-type boundary
conditions. These boundary conditions display alocal role of the K-space. In a crystal
the local Bloch states on the cells match together to form the global-band states. The
computational problem with the cellular method is that the Bloch boundary conditions in
three dimensions (3D) cannot be handled exactly so that approximations are required, see
[1].
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An analysis free from approximations is available in one dimension (1D). Here one can
use the transfer matrix and the trace map [2]. All the quantum multiple and backscattering
effects of the electrons from the atomic potentials are treated exactly. In 1D the cellular
method works exactly, for example for the well known Kronig–Penney model. The
appearance of quasicystals has suggested many studies of 1D quasiperiodic sequences from
several cells, see Kohmoto [8] for the discrete case and work quoted in [2] for the continuous
one. As in the cellular method, one starts from local states on several cells withK-type
boundary conditions for each cell. Then one must match these boundary conditions over a
quasiperiodic string with several cells of increasing length.

In this paper we reexamine the electronic states in periodic and in quasiperiodic 1D
potentials. We start from a local point of view and stress boundary conditions. Our treatment
differs from former work in 1D by the emphasis on anexact tight-binding scenariodefined
in sections 3 and 4. In sections 4 and 5 we propose the local concepts ofband germs,
Bloch germs, energy gauges and decaying statesand analyse them in sections 6 and 7 on
very simple models with one type of (atomic)δ-potentials with two spacings. We believe
that these concepts are relevant for the interpretation of electrons in three dimensional (3D)
quasicrystals, although we cannot yet propose a computational scheme for them.

2. Transfer matrices

For the mathematical physics of 1D quantum systems we refer to [12]. Consider electron
states on the line as solutions of the time-independent continuous Schrödinger equation with
V a piecewise constant potential and with energyE. Arrange solutions and their derivatives
into columns. A fundamental system of two solutions and their derivatives can be put into
the two columns of a 2× 2 transfer matrixM(x). As initial data for the system we take

M(0) =
[

1 0
0 1

]
. (1)

Then the Wronski determinant of the transfer matrixM(x) keeps the initial valueW = 1. A
general transfer matrix is a product of factors which apply to intervals with constant potential.
Matrix multiplication guarantees continuity of the solutions and their first derivatives.
Typical factors of a general transfer matrices are thesquare well of lengtha,

M(a) =
[

cos(ka) k−1 sin(ka)
−k sin(ka) cos(ka)

]
. (2)

Here the potential isV0 = − h̄2

2mρ
2 and the energy isE = − h̄2

2mκ
2 < 0, k2+ κ2 = ρ2.

In the limit k2a = u, ka→ 0 the square well goes into theattractive δ-well of strength
u which we indicate by an argumentε,

M(ε) =
[

1 0
−u 1

]
. (3)

The transfer matrix

M(b) =
[

cosh(κb) κ−1 sinh(κb)
κ sinh(κb) cosh(κb)

]
(4)

forms abarrier of lengthb if the potential isV0 = h̄2

2mρ
2 and the energy isE = h̄2

2mk
2 >

0, k2 + κ2 = ρ2. The correspondingδ-barrier is obtained by replacingu → −u in
equation (3). We keep the transfer matrix of equation (4), but now takeV0 = 0 and
E = − h̄2

2mκ
2. ThenM(b) describes atunnel of lengthb.
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The transfer matrices are elements of the real unimodular groupSL(2, R), [12, 9]. The
equivalence classes of this groupfall into three typescharacterized by the absolute values of
their traces:1

2| tr(M)| < 1, > 1,= 1. The first case yields for the eigenvalues two complex
conjugate numbers of modulus 1, the second two real numbers with product 1, and the third
case allows for a Jordan decomposition.

The occurrence of complex eigenvalues motivates the use ofthe complex formSU(1, 1)
of the groupSL(2, R) [9, 10], defined byq†SL(2, R)q with elementsgc,

gc := q†gq

q :=
√

1

2

[
1 1
i −i

]
.

(5)

For a casegc : 1
2 tr(gc) = λ0, |λ0| < 1 with complex conjugate eigenvalues

µ = λ0+ i
√

1− λ0
2 µ = λ0− i

√
1− λ0

2 (6)

the diagonalizing matrix can be chosen fromSU(1, 1) in the form

Vc =
[
v w

w v

]
vv − ww = 1. (7)

The eigenvalue equation for complexgc,

gcVc = Vc1 1 :=
[
µ 0
0 µ

]
(8)

yields for the real formg from equation (5) the eigenvectors in the form

g(qVc) = (qVc)1. (9)

Apply this to the transfer matrixg = M. Then the columns ofM ′ = M(qVc) can be
interpreted asa new system of fundamental solutions with initial data given by(qVc). If we
compute the charge current density of the two column statesφ1, φ2 of M(qVc) = (qVc)1,
we obtain from equation (7), (see appendix A1),

j1 = −j2 = eh̄

2im
(φ1φ1

′ − φ1
′
φ1) = eh̄

2m
. (10)

Proposition 1.For a real transfer matrix with12| tr(M)| < 1, we can determine two complex
eigenvectors with standard charge densities of opposite signs.

From equation (7) it can easily be shown thatfor any linear combination of the type
φ = φ1+ exp(iα)φ2 the charge current density isj = 0.

3. Loose and tight binding

Consider in 1D a finite number ofδ-barriers arranged at relative distancesa, b, c . . .. With
E > 0, the potentials between two consecutive barriers may model attractive potentials of
atoms. The atomic potentials have the width of the intervals. At the limits of these intervals,
they are separated only by the weakδ-barriers . We call this aloose binding. This scenario
has been very popular for the consideration of electrons in quasiperiodic 1D potentials.

It is well known that the tight-binding approximation in 3D, based on bound atomic
orbitals, gives a very successful account of electrons in crystals. Consider in 1D a finite
number of attractiveδ-potentials arranged at relative distancesa, b, c, . . .. Take electron
states in these attractive atomic potentials at negative energyE < 0. In contrast to the loose
binding scenario there will be bound states. An electron must cross a tunnel to reach the
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next atom. We refer to this situation as the exacttight-binding scenario, but strictly avoid
any approximation such as atomic orbitals which are often associated with this scheme.

In what follows we shall study the tight-binding scenario in more detail.

4. Tight binding: band germs and tunnels

In contrast to the usual treatment we considerstates on finite strings. A typical string of
the tight-binding scheme is apotential well of lengtha, followed by an interval of length
b with potentialV = 0 which forE < 0 represents atunnel of lengthb. Its transfer matrix
from equations (2) and (4) is

M(b + a) =
[

cosh(κb) κ−1 sinh(κb)
κ sinh(κb) cosh(κb)

] [
cos(ka) k−1 sin(ka)
−k sin(ka) cos(ka)

]
(11)

where the energy is nowE = − h̄2

2mκ
2 andk2+κ2 = ρ2. Replacing the well by aδ-potential

we obtain

M(b + ε) =
[

cosh(κb) κ−1 sinh(κb)
κ sinh(κb) cosh(κb)

] [
1 0
−u 1

]
=
[

cosh(κb)− u
κ

sinh(κb) κ−1 sinh(κb)
κ sinh(κb)− u cosh(κb) cosh(κb)

]
. (12)

By the argument(b + ε) we indicate the presence of aδ-well at x = 0.

Definition 2. For a product of the type in equations (11) and (12), a range of negative
energiesE < 0 such that12| tr(M)| 6 1 we call aband germ.

A band germ, derived from a local attractive potential and tunnel, is a negative-energy
range which allows for specific boundary conditions. The one-electron states in the attractive
potential followed by the tunnel allow us to introduce a band germ labelK(E) by putting

1
2 tr(M) = 1

2(µ+ µ) := cosK(a + b), 06 K(a + b) < π. (13)

Example 1.To find the band germs in the example of the well equation (11) we look in
particular for the energy where

1

2
tr(M(b + a)) = cosh(κb) cos(ka)− 1

2

(
k

κ
− κ
k

)
sinh(κb) sin(ka) = 0

coth(κb) cot(ka) = 1

2

(
k

κ
− κ
k

)
.

(14)

Since the transfer matrix is a continuous function of the energy, we can expect that any
energy valueE = − h̄2

2mκ
2 obeying equation (14) forms thecentre of a band germsuch

that−1 < 1
2 tr(M) < 1. With cot(α) := k

κ
we introduce an angle on the circle given by

k2+ κ2 = ρ2. The condition (14) becomes

coth(κb) cot(ka) = cot(2α). (15)

This equation has at least one, in general several, solutions and so we can find the band
germs. We characterize the states belonging to a band germ in terms of the finite string.

Proposition 3.For any energy within a band germ, there are two complex eigensolutions
of M which after passing the string would be multiplied by two eigenvaluesµ,µ,µµ = 1
respectively. These we call theBloch germs.
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5. An energy gauge for bound and decaying states

Definition 4. Consider a finite string and embed it into tunnels of infinite length both to the
right and to the left. Abound stateis a solution of negative energyE = − h̄2

2mκ
2
0 which

decays in the tunnels to the right and to the left as exp(∓κ0x) respectively.
We emphasize that bound states can occur only in the tight-binding, not in the loose-

binding scenario. To characterize bound states on a finite string we pass to a different
representation. The transfer matrix is nonlinearly related to thescattering matrixS(k)
[9]. Bound states appear in the analytic continuationk → iκ both of the transfer and the
scattering matrix fromE > 0 toE < 0: assume thatV 6= 0 only in a bounded interval and
considerE < 0. Then to the left and to the right of this interval taketunnels of infinite
length with transfer matrices of the type of (4) but with energyE = − h̄2

2mκ
2. Pass in

these transfer matrices equation (4) from hyperbolic solutions to increasing and decreasing
exponential solutions respectively. This is achieved byright multiplication with the matrix

R(iκ) = 1√
2iκ

[
1 1
−κ κ

]
(16)

(see appendix A2). The right multiplication yields a new system of two fundamental
solutions with initial dataR(iκ). We conjugatethe full transfer matrixat fixed energy
according to

M → M̃ = R−1MR. (17)

This new form of the transfer matrix propagates the new system of fundamental solutions.
The boundary condition for a bound state requires that an exponentially increasing solution in
the left-hand tunnel producesexclusively an exponentially decaying solution in the right-hand
tunnel. This property must arise already from the transfer matrix of the finite string—we
need no asymptotics.

Proposition 5.The finite string has a bound state if and only if at the energyE(κ0) = − h̄2

2mκ
2
0

the lower diagonal element of the new tranfer matrixM̃ vanishes.

Example 1.For the square well equation (2) the new transfer matrix, taken only over the
interval 〈0, a〉, becomes

M̃(a) =
[

cos(ka)+ 1
2(

k
κ
− κ

k
) sin(ka), 1

2(
k
κ
+ κ

k
) sin(ka)

− 1
2(

k
κ
+ κ

k
) sin(ka), cos(ka)− 1

2(
k
κ
− κ

k
) sin(ka)

]
(18)

and the bound-state condition is

cos(ka)− 1

2

(
k

κ
− κ
k

)
sin(ka) = 0. (19)

This equation together with the energy condition always has, as is well known, at least one,
in general several, symmetric or antisymmetric solutions.

Now we compare bound states with states in band germs. Consider a fixed bound state
with fixed κ = κ0, k = k0. Evaluation of the trace of the transfer matrixM(b + a) of the
band germ equation (11) at this value yields with the help of equation (19)

1
2| tr(M)| = | cos(k0a)| exp(−κ0b) < 1. (20)

This corresponds to an inner point of a band germ and so we have, first for the square well,
a local implication of K-space for bound states.
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Proposition 6.A bound state whose binding potential is located in a finite string is always
embedded into a band germ.

The finite string may also appear as part of a larger string. Because of their specific
boundary conditions at the limits of the finite string, we then refer to the former bound
states asdecaying states. Conversely, given a single bound state on a finite string, the band
germ energy interval can be reinterpreted asan energy gauge for the single bound state. We
shall use the termenergy gaugef for a function of the energy which displays the gaps and
band germ intervals of the finite string say with the values 1 or 0 respectively, see figures 1
and 2. The spatial behaviour found in bound and (in two directions exponentially) decaying
states will be termed confinement.

The notion of decaying states still refers to a finite string embedded into tunnels of
infinite length. Therefore we avoid the term localized state.

At the fixed valueκ = κ0 and corresponding energyE < 0 we have nowthree types
of states: two Bloch germs with complex conjugate eigenvalues, and the bound state. It
follows that the bound or decaying state must be locally expressible as a superposition
of Bloch germs. Conversely, by adding to the bound-state solution a second non-decaying
solution of the same energy, we must be able to construct the two Bloch germs. The contrast
between these states appears in the boundary conditions and in theconserved charge current
density.

For the bound or decaying state we obtain at any point in the tunnel the valuej = 0,
there is no current. In contrast to this, the Bloch germs carry standard charge current
according to equation (10) to the right and left respectively.

Example 2.We illustrate the situation by a band germ formed from aδ-potential (3) followed
by a tunnel of lengthb with the transfer matrix (12). We obtain, see appendix A2, a single
bound state atκ = κ0 = u

2. This bound state is symmetric with respect to the position of
the δ-potential and in the right-hand tunnel has the exponential form

ψ(x) = cosh(κ0x)− sinh(κ0x) = exp(−κ0x). (21)

At this energy, we get forM from equation (13)12 tr(M) = λ0 = exp(−κ0b).
The eigenvalues for the Bloch germs are given by equation (6) with the present value

of λ0. From the explicit form ofM at κ = κ0 we compute, see appendix A1, the two
eigenstates for the eigenvaluesµ,µ and obtain in the right-hand tunnel the Bloch germs

φ1(x) =
√

1

ul
[cosh(κ0x)− sinh(κ0x)+ il sinh(κ0x)]

φ2(x) =
√

1

ul
[cosh(κ0x)− sinh(κ0x)− il sinh(κ0x)]

l :=
√

1− exp(−2κ0b)

sinh(κ0b)
.

(22)

These states have the standard charge current densities of equation (10). They could
be converted to the usual Bloch form by extracting the factors exp(±iKx) respectively.
Clearly the bound state equation (21) in the tunnel may be expressed as the superposition
of Bloch germs,

ψ(x) = 1
2

√
ul(φ1(x)+ φ2(x)). (23)
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6. The gauge for crystals: bound states, bands, and Bloch states

We rephrase the well known periodic case [12] in these terms. Consider first the finite string
of lengtha + b with a single atom and with the transfer matrix (11). Repeat this stringn

times to produce a new transfer matrixMn. Since the existence of band germs is related to
the eigenvalue problem, the range of energies for which1

2| tr(Mn)| < 1 is independent of
n, the band germs stay the same on the new string. The Bloch germs propagate through the
string and pick up the same phase factorsµ,µ respectively after each transmission.

Consider next the bound states of the stringMn.

Proposition 7.The bound states of the stringMn may be grouped into sets ofn states,
where the energies of each such set corresponds to a partf = 0 of the energy gaugef of
the stringM.

Proof. For very tight binding(ua � 1, ub � 1) it suffices to give a proof based on first-
order degenerate-perturbation theory, applied to the bound states of the single atoms: to
this order, the bound states of the string are the eigenvalues of a matrix whose off-diagonal
entries are the weak atom–atom cross terms. By standard matrix theory, the maximum
level splitting will increase withn. However, band theory tells us that in the limitn→∞
all energies stay inside the band, hence inside the initial band germ. Thus the energy of
all these bound states for finiten must stay within the energy gauge of the (single) band
germ. �

We now have the following situation in the finite stringMn: in a band germ from the
string M, there is for each energy value a pair of Bloch germs which can carry charge
current. There are nown discrete bound states with the energy gauge as in the initial string.

A schematic view of the periodic scheme is given in figure 1. Now we can extend the
analysis ton→∞.

Proposition 8.For an infinite periodic repetition of a fixed string, the energy gauge stays
the same as for the initial string. The band germ generates a band. Within each band there
is an infinite set of (pairs of) Bloch states whose energiesEK < 0 fill up the original band
germ.

Figure 1. Periodic strings. The stringS to the left has one attractiveδ-well with a single bound
state, followed by a tunnel. The vertical bar to its left shows the energy interval for the band
germ. This interval is an energy gaugef (S) comprising the bound state. The stringS2 in
the middle has two attractiveδ-potentials and two bound states. The energy gaugef (S2) is
unchanged but comprises two bound states. The same energy gaugef (S4) for the stringS4 to
the right comprises four bound states.
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Figure 2. Fibonacci strings. The stringS to the left and its energy gaugef (S) are as in figure 1.
The stringL in the middle has the same bound state within the gaugef (L) of smaller width.
The stringSL to the right has twoδ-wells and hence the same bound states asS2 in figure 1. In
contrast toS2, the stringSL has two separate band germs as in example 3. The corresponding
two parts of the energy gaugef (SL) each comprise one bound state but block the energy of
the single-atom bound state.

7. Tight binding and energy gauges on Fibonacci strings

We move on to quasiperiodic strings, the basic example being the Fibonacci strings [8, 2].
In contrast to the usual treatment we emphasize the tight-binding scenario. Consider one
type of atoms whose potential is an attractive well or aδ-potential equation (3). Assume
two spacings and transfer matricesS,L for the potential well followed by tunnels of length
S : b, L : τb respectively. The Fibonacci string is generated as

S → L→ SL→ LSL→ SLLSL→ LSLSLLSL . . . . (24)

We read these strings as a sequence of intervals on the line running from the left to the
right.

Example 3.Consider the Fibonacci string formed by attractiveδ-potentials of equal strength
at initial points of intervals with lengthS → b, L → τb and transfer matrices
M(b + ε),M(τb + ε) as in equation (12). The third stringSL has twoδ-potentials at
a distanceb. By the technique described in section 6 we derive from the transfer matrix
the condition for bound states. We are dealing with hybrid states of the doubleδ-potential.
These are symmetric or antisymmetric with respect to the midpoints of the string of length
b. The corresponding valuesκ1,2 are found as described in section 6. In terms of the
parameter

λi := exp(−κib) (25)

one finds from appendix A3:

λ1 = 2κ1− u
u

λ2 = −2κ2+ u
u

. (26)

Thus the symmetric bound state is below, the antisymmetric bound state above the single-
atom bound state withκ0 = u

2.

The trace for the stringSL may be written in terms of the parameterλ := exp(−κb)
and from appendix A4 becomes

1

2
tr(M) = κ + u

2κ
λτ+1+ κ − u

2κ
λ−τ−1+ 1

8

(u
κ

)2
(λτ+1+ λ−τ−1− λτ−1− λ−τ+1). (27)

For the bound-state valuesλ1, λ2 one verifies that the absolute value of the half-trace
equation (27) is smaller than one so that each one is in a band germ, see figure 3.
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Figure 3. The stringSL. Band germs and bound states as functions of the parametersβ of the
energy and of the parameterγ of the potential strength. The energy is negative in the lower
partβ > 0 and positive in the upper partβ < 0. Theδ-potentials are attractive forγ > 0 in the
tight-binding scenario, right-hand side, and repulsive forγ < 0 in the loose binding scenario,
left-hand side. Band germs are shaded, bound states of the single and doubleδ-potential are
shown as a dashed line and full curves forγ > 0, β > 0.

We compute the trace equation (27) at the single-atom bound-state valueκ0 and obtain
1
2 tr(M) = 2λτ+1

0 − 1
2(λ
−τ+1
0 + λτ−1

0 ). (28)

For a strengthγ := ub = 2κ0b = 2 we obtain the value
1
2 tr(M) = −1.18 (29)

and so forγ > 2 the single-atom binding energy is outside the two band germs but in
between the two bound states, see figure 3.

From the separation we can estimate the characteristics of energy and distance for this
tight-binding scenario: with an assumed distanceb = 1.058× 10−8 cm, the valueκ0b = 1
yields a single-atom bound-state energyE = −3.4 eV.

In figure 3 we give a complete quantitative description of the stringSL as a function
of the parametersγ := ub, β := κb. The right-hand part withγ > 0 describes the tight-
binding scenario. For negative energyE = − h̄2

2mκ
2 6 0, β > 0 we give the two band germs

(shaded). The bound state of the singleδ-potential is marked by a broken line. The bound
(decaying) states of the attractive doubleδ-potential are shown as curves running inside the
two completely separated band germs which set their energy gauges. For 06 γ < 2 there
is only one bound state, namely the symmetric hybrid state of the two atoms at distance
b. The second antisymmetric hybrid state appears bound only for a strengthγ > 2. Only
for large values ofγ do the band germs give good estimates for the two bound (decaying)
states.

In the upper part of figure 3 we extend the notion of band germs to positive energy
E = h̄2k2

2m > 0 by the analytic continuationκ → k = −iκ > 0, β = −kb < 0. On the
left-hand side of figure 3 withγ < 0 we include the loose-binding scenario with repulsive
δ-potentials of the same spacing. The gaps between the band germs close for vanishing
potential γ = 0 as expected and continue to the positive-energy region studied in this
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Figure 4. Band germs for the stringsS, SL,LSL respectively in a Fibonacci sequence ofδ-
potentials. The strength and energy parameters are as in figure 3. For negative energyβ > 0
there are one, two and three well-separated band germs respectively. The number of band germs
increases with the number of atoms.

scenario. Note, however, that there are no bound or decaying states associated with this
type of band germs.

We conclude that the band germs in the Fibonacci string provide the energy gauge for
the bound or decaying states of that string but, in marked contrast to the periodic case, have
no simple predictive power for the extension of the string. If we considered the stringSL

as an approximant, we would interprete the band germs as proper bands and derive from
them the DOS. This DOS would be a sequence of gaps and in-band density distributions.
It would be appropriate for an approximant crystal but yield no helpful information for the
quasicrystal.

In figure 4 we display in three parts the changes in the band germs for the first three
stringsS, SL,LSL of the Fibonacci sequence. The three strings show one, two and three
well separated band germs respectively. There is no simple relation between the three
band-germ patterns at a fixed strength parameterγ . The number of band germs grows
proportionally to the number of atoms. The width of the band germs shrinks with increasing
length. In contrast to the periodic case there is no filling of the initial band germs by states
under the quasiperiodic extension of the string. For high values of the strengthγ the narrow
band germs encapsulate the one, two or three bound or decaying states of the strings.

Clearly there is a fundamental difference in the behaviour of gauges for the periodic
case discussed in section 6 and for the present quasiperiodic one.

Now we discuss the Fibonacci sequence in terms of the well known trace map [2, 9]
which allows to compute the traces of the Fibonacci strings recursively: The set of three
successive half-traces forms a discrete dynamical system which has an invariantI related
to the commutator

K(M(τb + ε),M(b + ε)) := M(τb + ε)M(b + ε)M−1(τb + ε)M−1(b + ε) (30)

by

1
2 tr(K) = 2I + 1. (31)

The geometry and meaning of this invariant is discussed for example in [8, 2, 9, 10]. It
determines a cubic surface in the space of the three half-traces, whose shape depends on
the value of the half-trace of the commutator. In [2] it was shown that this invariant as
a function ofk has quadratic zeros with periodk = π

(τ−1)b . This value ofI implies for
the trace map that the cubic surface develops a part bounded by the unit cube and for
the two transfer matrices that they commute. It was shown in [2] numerically that at the
corresponding energies one should expect extended states.
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The analysis of [2] was carried out exclusively in theloose-binding scenario. In the
presenttight-binding scenario there are important changes: the trace of the commutator
can be obtained by analytic continuation from the value given in [2] and now yields, (see
appendix A3),

1

2
tr(K) = 1+ 1

2

(u
κ

)2
(sinh(κ(τ − 1)b))2. (32)

Proposition 9.In the tight-binding scenario on Fibonacci strings with a single type ofδ-well
on each vertex, the invariantI is always larger than zero. The cubic surface for the trace
map has no bounded part, it corresponds to figure 1 of [8]. No pair of transfer matrices can
commute.

From this analysis we see that, when we start in the band germ of the stringS,L and
hence have half-traces of absolute value smaller than one to begin with, we can already
get in the next stringSL, a half-trace of absolute value larger than one. This happens
in example 3 at the single-atom binding energy. It essentially implies that the dynamical
system of half-traces at this fixed initial energy can, and in general will, leave the region
of the invariant surfaceI bounded by the unit cube. There are no regions of fixed energy
where we can expect extended states. The only energetic positions where half-traces of
absolute value smaller than one can occur are the band germs associated with the bound
or decaying states. These band germs under extension of the quasiperiodic string and as
functions of the energy develop in a non-trivial fashion. The quasiperiodic DOS is governed
by this development.

We summarize the results obtained from the Fibonacci tight-binding scenario.

Proposition 10.The transfer matrix for any string in the tight-binding scenario aftern steps
may have up ton separate band germs. These band germs gauge up ton bound or decaying
states. Under the quasiperiodic extension of the string, the system of band germs keeps
changing. In this extension, the change of the one-electron DOS cannot be described and
labelled by the filling of the system of band germs obtained in stepn. The development of
the system of band germs follows the pattern of decaying states for the finite strings. The
distribution of these decaying states under the quasiperiodic extension should play a crucial
role for the shape and interpretation of the DOS in quasicrystals.

A single electron assigned to a band germ could occupy the decaying state, would be
confined to the quasicrystal and carry vanishing charge current density.

8. Electron confinement

The present analysis provides some new concepts for electron states in quasicrystals and in
particular a new interpretation for the tight-binding approximant scheme. The concepts and
the interpretation of course still have to be tested and established by model computations
in systems of 3D. In 3D we consider a quasicrystal made up by the quasiperiodic packing
of elementary patches into larger patches.

(i) The bands computed from an approximant can be reinterpreted asband germs of
finite patches. Each band germ of the patchopens up an interval on the energy gauge for a
single bound state. It would provide a set of one-electron band energies and a corresponding
DOS with gaps and in-band parts only if the patch were repeated periodically so that the
Bloch germs could match. This only happens in an approximant crystal. For a quasicrystal
the DOS cannot be obtained by interpreting the band germs as proper bands.

(ii) It makes sense to consider the bound states of free clusters taken from a quasicrystal,
[11] since these bound states can yield information on relevant decaying states.
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(iii) In building a quasiperiodic structure, the Bloch germs from the patches in general
do not match one another. Each bound state of an isolated patch when built into a larger
patch could become a decaying and hence a confined state. In a tight binding scenario, the
number of band germs and hence of these decaying states can increase proportionally to
the number of atoms. The DOS of the quasicrystal must be found from the development
of the band germs under quasiperiodic extension. This development is closely linked to the
distribution of decaying states.

Electrons in band germs could occupy these decaying or confined states of vanishing
charge current density, part of which could be assigned to hybrid states in local clusters.

Appendix A

A.1. Charge current density

We first derive equation (10) for the charge current. Normalization of the current
density replaces the norm for these solutions which are not square integrable. A matrix
gc ∈ SU(1, 1) with 1

2| tr(gc)| < 1 has two complex conjugate eigenvaluesµ,µ and
eigenvectors as given in the columns of the matrixVc equation (7). We identify the real
form g = qgcq† with a transfer matrix

MqVc = qVc1 =
√

1

2

[
v + w w + v

i(v − w) i(w − v)
] [

µ 0
0 µ

]
. (33)

Computation of the charge current density yields from the first column of this matrix

j1 = eh̄

2im
(φ1φ

′
1− φ

′
1φ1) = eh̄

2m
(vv − ww) = eh̄

2m
. (34)

A.2. Bound states and Bloch germs

The matrix equation (4) yields upon right multiplication withR from equation (16) the new
fundamental system

MR = 1√
2iκ

[
exp(−κx) exp(κx)
−κ exp(−κx) κ exp(κx)

]
(35)

of exponentially de- and increasing functions. The new transfer matrix of this fundamental
system for the transfer matrix equation (3) of theδ-well is

M̃(ε) = R−1M(ε)R = 1

2κ

[
2κ + u u

−u 2κ − u
]
. (36)

For a bound state the lower diagonal part of this matrix must vanish and so 2κ0 − u = 0.
Consider now the band germM(b + ε) equation (12) at this energy. Its half-trace at
κ = κ0 becomesλ0 = exp(−κ0b) and the eigenvalues are given by equation (6). A similar
computation for the transfer matrix equation (2) yields equations (18) and (19).

To compute a Bloch germ ofM(b + ε) from equation (12) we determine it as the
eigenvector(c1, c2) for the eigenvalueµ at the single-atom bound-state energy withκ0 = u

2
from

(cosh(κ0b)− 2 sinh(κ0b)− µ)c1+ 2

u
sinh(κ0b)c2 = 0

c2

c1
= u

2
(1+ il)

l :=
√

1− exp(−2κ0b)

sinh(κ0b)
.

(37)
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The first Bloch germ in the right-hand tunnel with this ratio of coefficients becomes

φ1 ∼ cosh(κ0x)− sinh(κ0x)+ il sinh(κ0x)). (38)

Upon normalizing the charge current according to equation (10) one finds the upper part of
equation (22).

A.3. Fibonacci strings

The string with transfer matrixM(τb+ ε)M(b+ ε) has the bound states of twoδ-wells at
a distanceb. Transforming the productM(ε)M(b)M(ε) from equations (3) and (4) with
the matrixR and putting the lower diagonal element equal to zero yields

2(κ − u) cosh(κb)+
(

2(κ − u)+ u
2

κ

)
sinh(κb) = 0. (39)

With λi := exp(−κib) one finds for the symmetric solutions

λ1 = 2κ1− u
u

(40)

and for the antisymmetric solutions

λ2 = −2κ2+ u
u

. (41)

For the stringSL the transfer matrix is a product

M = M(b2+ ε)M(b1+ ε) (42)

of two transfer matrices of the type equation (12). We give the general matrix elements of
this product:

M11 = cosh(κb2) cosh(κb1)+
(

1+
(u
κ

)2
)

sinh(κb2) sinh(κb1)

−u
κ

cosh(κb2) sinh(κb1)− 2u

κ
sinh(κb2) cosh(κb1)

M12 = − u
κ2

sinh(κb2) sinh(κb1)

+1

κ
cosh(κb2) sinh(κb1)+ 1

κ
sinh(κb2) cosh(κb1)

M21 = −2u cosh(κb2) cosh(κb1)− u sinh(κb2) sinh(κb1)

+
(
κ + u

2

κ

)
cosh(κb2) sinh(κb1)+ κ sinh(κb2) cosh(κb1)

M22 = cosh(κb2) cosh(κb1)+ sinh(κb2) sinh(κb1)− u
κ

cosh(κb2) sinh(κb1).

(43)

For the stringSL we haveb1 = τb, b2 = b. The half-trace in terms ofλ := exp(−κb)
becomes
1

2
tr(M) = cosh((τ + 1)κb)− u

κ
sinh((τ + 1)κb)+ 1

2

(u
κ

)2
sinh(τκb) sinh(κb)

= κ + u
2κ

λτ+1+ κ − u
2κ

λ−τ−1+ 1

8

(u
κ

)2
(λτ+1+ λ−τ−1− λτ−1− λ−τ+1) (44)

which is equation (27). By the use of two general products as in equation (43) one can
compute the commutator equation (30) and obtain its half-trace equation (32).
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